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Representation Systems and Quantum Structures

Olivier Brunet1

Two important classes of quantum structures, namely orthomodular posets and ortho-
modular lattices, can be characterized in a classical context, using notions like partial
information and points of view. Using the formalism of representation systems, we
show that these quantum structures can be obtained by expressing conditions on the
existence of particular points of view, of particular ways to observe a system.
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1. INTRODUCTION

The study of quantum structures such as orthomodular posets and ortho-
modular lattices constitutes an important part of the efforts to understand the
relationship that exists between the quantum world and the classical, Newtonian
one. The traditional approach to this kind of study relies on the decomposition of
an orthomodular structure into blocks, that is into maximal boolean subalgebras
(one can refer to Pták and Pulmannová, 1991; Hughes, 1989; Svozil, 1998; or
Dalla Chiara and Giuntini, 2001).

We present another approach, based on the decomposition of an orthomod-
ular structure into complete boolean subalgebras. To this respect, we introduce
representation systems which are an algebraic structure aimed at modeling partial
knowledge about a system with an explicit notion of “point of view”: if one con-
siders a way to observe a system in a classical manner, it is natural to associate to
this point of view a finite (or more generally, complete) Boolean algebra whose
elements correspond to partial knowledge about the state of the system, this par-
tial knowledge following from information obtained from the considered point of
view. In particular, the consideration of partial knowledge provides an intuitive
justification for decomposing an orthomodular structure into complete Boolean
subalgebras.
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We started this study in with Brunet (2004b) and in the present article, we
show that under some conditions about the existence of particular points of view
and about the way they relate to each other, the set of all partial descriptions of the
system, regardless of their originating point of view, constitutes an orthomodular
poset or an orthomodular lattice. This way, we provide a characterization of these
quantum structures by means of purely classical notions such as that of point of
view or of partial information.

In the next section, we introduce representation systems. Then, we focus on
a restriction of these structures by demanding that each point of view is associated
to a Boolean algebra. In Section 4, we show that our formalism can be used to
define quantum structures by imposing conditions on the existence of adequate
points of view. Finally, in Section 5, we show that every orthomodular poset and
orthomodular lattice can be obtained in this way.

2. REPRESENTATION SYSTEMS

Representation systems (Brunet, 2002, 2004a,b) are an algebraic structure
whose purpose is to model partial knowledge about a system. They are based on
two important related notions: points of view and partial information. A point of
view corresponds to a way to “observe” the system (the verb observe is used here
with its general meaning and not with its quantum acception) and gain information
about its state. In particular, it might not be possible from a given point of view
to totally describe the observed system. As a consequence, the information has to
be considered in general as partial (i.e., as not sufficient to totally characterize the
state of the system) in this context.

To each of these points of view, one can associate a poset whose elements
represent partial descriptions of the state of the system, these partial descriptions
corresponding to information obtainable from the considered point of view. This
means, in particular, that a partial description associated to one point of view
cannot in general be associated to another point of view. However, we assume
that knowledge about the general structure of the system allows us to translate
partial descriptions from one point of view to another, with the restriction that
some information can be lost in the process. This assumption is formalized by
what we call transformation functions in our formalism.

A detailed presentation of these structures can be found in Brunet (2004a,b).

Definition 1. (Representation System) A representation system is a tuple S =
〈I, {〈Pi ,≤i〉}i∈I , {fi|j }i,j∈I 〉 where I is a set of indices, where for every i in I ,
〈Pi ,≤i〉 is a poset, and where the functions {fi|j : Pj → Pi}i,j∈I , called transfor-
mation functions, verify the following three properties:

∀i ∈ I , fi|i = idi Identity (1)
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∀ i, j ∈ I , ∀x, y ∈ Pj , x ≤j y ⇒ fi|j (x) ≤i fi|j (y) Monotony (2)

∀ i, j, k ∈ I , ∀x ∈ Pk, fi|k(x) ≤i fi|j ◦ fj |k(x) Composition (3)

2.1. Example

Consider an experiment with a firefly trapped in a box. This box is divided
into four sectors (numbered from 1 to 4 in the figure below, on the left) and has an
opaque division between sectors 2 and 4. At a given moment, two observers (X
and Y ) tell whether they see the light of the firefly, and in that case, in which half
of the box they see it.

This situation can be modeled by means of a representation system with two
points of view X and Y , corresponding to the two observers. The corresponding
posets are depicted below on the right. For instance, the elements of the X-poset
are “
” (an information-less description), “Not seen,” “Seen,” “Left” and “Right,”
depending whether the light of the firefly has been seen or not, and in the second
case, in which half of the box it has been seen.

Moreover, in the same figure, the arrows depict the behavior of the trans-
formation functions. For instance, the arrow from “Right” to “Down” correspond
to the equality fY |X(Right) = Down and means that if X sees the light in the
right half of the box, then the firefly is lit and is in sector 4, which corresponds,
from Y ’s point of view, to description “Down.” One can note that we have only
represented the meaningful arrows, which are sufficient to entirely determine the
transformation functions. Thus, one has fY |X(Left) = Seen and fX|Y (Up) = 
.

2.2. Sum of a Representation System

Given a representation system, it is possible to merge the posets associated
to the different points of view into a single poset. This way, one obtains a structure
containing all the possible partial descriptions, regardless of the associated points
of view.
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Definition 2. (Presum of a Representation System) Given a representation system
S = 〈I, {Pi}i∈I , {fi|j }i,j∈I 〉 we define its presum as the pair 〈S�,≤�〉 where:

S� = {〈i, x〉 | i ∈ I and x ∈ Pi} 〈i, x〉 ≤� 〈j, y〉 ⇔ fj |i(x) ≤j y

Proposition 1. The presum 〈S�,≤�〉 of a representation system S is a preordered
set, or equivalently ≤� is a reflexive and transitive relation on S�.

This preorder induces an equivalence relation �� on S� by defining:

〈i, x〉 �� 〈j, y〉 ⇔ 〈i, x〉 ≤� 〈j, y〉 and 〈j, y〉 ≤� 〈i, x〉
Let 〈i, x〉��

denote the equivalence class of an element 〈i, x〉 ∈ S� with regards
to ��.

Definition 3. (Sum of a Representation System) Let S = 〈I, {Pi}i∈I , {fi|j }i,j∈I 〉
be a representation system and define its sum as the pair

〈
S��

,≤��

〉
where:

S��
= {〈i, x〉��

| 〈i, x〉 ∈ S� 〈i, x〉��
≤��

〈j, y〉��
⇔ 〈i, x〉 ≤� 〈j, y〉

Proposition 2. The sum S��
of a representation system S is a poset.

Proposition 3. For i ∈ I and x, y ∈ Pi , one has:

〈i, x〉��
≤��

〈i, y〉��
⇔ x ≤i y

It is possible to adapt the notion of point of view of a representation system
to its sum by defining special closure operators on the sum. Let us first recall the
definition of an upper closure operator.

Definition 4. (Upper Closure Operator) Given a poset 〈P,≤〉, an upper closure
operator on P is a monotonic function ρ : P → P which verifies for all x:

Idempotence : ρ(ρ(x)) = ρ(x) Extension : x ≤ ρ(x)

For every i ∈ I , define a function ρi : S��
→ S��

by:

ρi(〈j, x〉��
) = 〈i, fi|j (x)〉��

Proposition 4. Given a representation system S, every ρi is an upper closure
operator on S��

.

Proof: Extension is shown as follows:

〈i, x〉 ≤� 〈j, fj |i(x)〉 ⇔ fj |i(x) ≤j fj |i(x)
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Idempotence is a consequence of Identity (Eq. (1)): fi|i(x) = x and Monotony of
Composition (Eq. (3)):

〈i, x〉 ≤� 〈j, y〉 ⇒ fj |i(x) ≤j y ⇒ fk|i(x) ≤k fk|j (y) �

Intuitively, an element a ∈ S��
such that a = ρi(a) corresponds to information

that can be observed from point of view i. In general, one has a ≤��
ρi(a), so that

only a part of the information corresponding to a can be observed from point of
view i.

3. BOOLEAN REPRESENTATION SYSTEMS

A natural constraint which can be added to the formalism of representation
systems is to assume that the poset associated to a given point of view forms a
Boolean algebra. This corresponds to the classical assumption of the “Newtonian”
world (as opposed to the quantum one) that knowledge behaves in the manner of
classical logic.

By, moreover, adding conditions on transformation functions in order to take
into account operations of Boolean algebras (in particular, orthocomplementation
and disjunction), we get the following definition:

Definition 5. (Boolean Representation System) A representation system S is
Boolean if and only if, using the usual notations:

1. Every poset Pi is a Boolean algebra
2. The transformation functions verify:

∀ i, j ∈ I, ∀x, y ∈ Pj , fi|j (x ∨ y) = fi|j (x) ∨ fi|j (y) (4)

∀ i, j ∈ I, ∀ x ∈ Pj , ∀y ∈ Pi , fi|j (x) ≤i y ⇒ fj |i(y⊥) ≤j x⊥ (5)

The following propositions illustrate some properties of the sum of a Boolean
representation system.

Proposition 5. Given a Boolean representation system S, for every 〈i, x〉 and
〈j, y〉 in S�, one has:

〈i, x〉 ≤� 〈j, y〉 ⇒ 〈j, y⊥〉 ≤� 〈i, x⊥〉

Proof: This is a direct consequence of Eq. (5):

〈i, x〉 ≤� 〈j, y〉 ⇒ fj |i(x) ≤j y ⇒ fi|j (y⊥) ≤i x⊥ ⇒ 〈j, y⊥〉 ≤� 〈i, x⊥〉 �

Corollary 1. Given a Boolean representation systemS, the operation 〈i, x〉��
�→〈

i, x⊥〉
��

is well defined and constitutes an orthocomplementation on S��
.



2152 Brunet

Proposition 6. Given a Boolean representation system S, for every i ∈ I and
x, y ∈ Pi , the join of 〈i, x〉��

and 〈i, y〉��
exists inS��

and is equal to 〈i, x ∨i y〉��
.

Proof: First, one has 〈i, x〉 ≤� 〈i, x ∨i y〉 and a similar inequality for 〈i, y〉.
Conversely, suppose that one has 〈i, x〉 ≤� 〈j, z〉 and 〈i, y〉 ≤� 〈j, z〉. In that
case, fj |i(x) ≤j z and fj |i(y) ≤j z so that as a consequence of Eq. (4), one has
fj |i(x ∨ y) ≤i z which is equivalent to 〈i, x ∨ y〉 ≤� 〈j, z〉. �

For the following proposition, let ⊥ (resp. 
) denote the least (resp. greatest)
element of a Boolean algebra.

Proposition 7. Given a Boolean representation systemS, its sumS��
is bounded

and the least and greatest elements are given respectively by 〈i,⊥〉��
and 〈i,
〉��

for any i ∈ I.

These results can be summarized in the following proposition:

Proposition 8. Given a Boolean representation system S, its sum S��
is a

bounded orthoposet.

In terms of closure operators, if S is a Boolean representation system then
for x, y ∈ S��

and i ∈ I , it follows directly from Propositions 5 and 6 that if
x = ρi(x), then x⊥ = ρi(x⊥) and if x = ρi(x) and y = ρi(y) then x ∨ y exists
and verifies x ∨ y = ρi(x ∨ y).

4. BOOLEAN REPRESENTATION SYSTEMS AND
QUANTUM STRUCTURES

In the previous section, we have introduced Boolean representation systems
and shown that their sum is an orthoposet. We now study some conditions about
the existence of appropriate points of view and characterize their sum.

4.1. Orthomodular Posets

The first condition we introduce states that two elements a and b such that
a ≤ b can be observed from a single point of view.

Proposition 9. Let S be a Boolean representation system such that:

∀ a, b ∈ S��
, (a ≤��

b ⇒ (∃ i ∈ I : a = ρi(a) and b = ρi(b))) (6)

Then S��
is an orthomodular poset.
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Proof: This results from the fact that with the above condition, two elements
verifying a ≤��

b belong to a Boolean subalgebra of S��
. As a consequence,

a ∨ b⊥ exists, and one has b = a ∨ (b ∧ a⊥). �

4.2. Orthomodular Lattices

The second condition we wish to study states that given two elements a and
b, there exists a “preferred” point of view i from which a is observable and such
that one can get as much information about b as possible:

ρi(a) = a and ∀ j,
(
ρj (a) = a ⇒ ρi(b) ≤ ρj (b)

)

But before this, we introduce a characterization of orthomodular lattices as
orthomodular poset equipped with a particular binary operation & (which can be
shown to correspond to the Sasaki projection):

Proposition 10. Let P be an orthomodular poset equipped with a binary oper-
ation & which verifies:

∀ x1, x2, y ∈ P, x1 ≤ x2 ⇒ x1 & y ≤ x2 & y & − Monotony (7)
∀ x, y ∈ P, x & y ≤ y & − Reduction (8)
∀ x, y ∈ P, x ≤ y ⇒ x & y = x & − Orthomodularity (9)
∀ x, y, z ∈ P, x & y ≤ z ⇒ z⊥ & y ≤ x⊥ & − Galois (10)

Then P is an orthomodular lattice.

Proof: Since P is an orthomodular poset, one only needs to show that it is
also a lattice. For this, define a binary operation ∧̄ as x∧̄y = (x⊥ & y)⊥ & y

and let us show that x∧̄y is the meet of x and y. First, it is clear from &-
Reduction that x∧̄y ≤ y. Moreover, one has x∧̄y ≤ x since x⊥ & y ≤ x⊥ & y

implies (x⊥ & y)⊥ & y ≤ x using &-Galois.
Finally, let z be in P such that z ≤ x and z ≤ y. One has:

z ≤ x Hypothesis
⇒ z & y ≤ x Hypothesis and & − Orthomodularity
⇒ x⊥ & y ≤ z⊥ & − Galois
⇒ z ≤ (x⊥ & y)⊥

⇒ z & y ≤ (x⊥ & y)⊥ & y & − Monotony
⇒ z ≤ (x⊥ & y)⊥ & y Hypothesis and & − Orthomodularity

This means that is z ≤ x and z ≤ y, then z ≤ x∧̄y, and finishes the proof that x∧̄y

is the meet of x and y. �
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Proposition 11. Let S be a Boolean representation system such that Eq. (6)
holds and that one has:

∀ a, b ∈ S��
, ∃ i ∈ I :

{
a = ρi(a) and
∀ j, (a = ρj (a) ⇒ ρi(b) ≤��

ρj (b))
(11)

Then S��
is an orthomodular lattice.

This condition corresponds to the fact that given two elements a and b, there
exists a least element c compatible with a such that b ≤ c.

Proof: Since Eq. (6) holds, S��
is an orthomodular poset, as it follows from

Proposition 9. As a consequence, it suffices to exhibit a binary operation as & in
Proposition 10. For this, given a and b in S��

, we define a & b as ρi(a) ∧ b with i

such that:

ρi(b) = b and ∀ j ∈ I , (ρj (b) = b ⇒ ρi(a) ≤��
ρj (a))

We show that this operator verifies the properties given in Eqs. (7)–(10).

• For &-Monotony (Eq. (7)), let a1, a2 be inS��
such that a1 ≤��

a2, and let i
and j be in I such that a1 & b = ρi(a1) ∧ b and a2 & b = ρj (a2) ∧ b. From
the choice of i and the monotony of ρj , one has: ρi(a1) ≤��

ρj (a1) ≤��

ρj (a2) so that a1 & b ≤ a2 & b.
• For &-Reduction (Eq. (8)), it is obvious that a & b ≤ b from its definition.
• For &-Orthomodularity (Eq. (9)), if a ≤��

b, there exists an index i ∈ I

such that a = ρi(a) and b = ρi(b). As a consequence, one has a & b =
a ∧ b = a.

• Finally, for &-Galois (Eq. (10)), suppose that a & b ≤��
c. This means,

with a & b = ρi(a) ∧ b, that ρi(a) ∧ b ≤��
c. As a consequence, c⊥ ≤��

(ρi(a))⊥ ∨ b⊥.
Now, following Eq. (11), introduce j ∈ I such that c⊥ & b =

ρj (c⊥) ∧ b, ρj (c⊥) ≤ ρi(c⊥) and ρj (b) = b. Since ρi(b) = b and
ρi

(
(ρi(a))⊥ ∨ b⊥) = (ρi(a))⊥ ∨ b⊥, it follows that ρj (c⊥) ≤��

(ρi(a))⊥ ∨
b⊥. Thus, one can write:

ρj (c⊥) ∧ b ≤ (
(ρi(a))⊥ ∨ b⊥) ∧ b ≤ (ρi(a))⊥ ∧ b ≤ (ρi(a))⊥ ≤ a⊥

Thus, we have shown that S��
is both an orthomodular poset and a lattice. �

5. REPRESENTATION OF QUANTUM STRUCTURES

The results in the previous section show that orthomodular posets and ortho-
modular lattices arise naturally in a context of partial representation of knowledge,
where there exists a “rich” enough collection of points of view. We now present
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the converse result, which states that these structures can always be obtained as
the sum of Boolean representation systems.

Let P be a bounded orthoposet, and define IP as the set of complete Boolean
subalgebras of P . Moreover, for all B ∈ IP , define ρB : P → B as:

ρB(x) =
∧

{y ∈ B | x ≤ y}
Finally, for B,B′ ∈ IP , let fB|B′ denote the restriction of ρB to B′.

Proposition 12. The tuple SP = 〈IP ,BB ∈ IP , {fB|B′ }B,B′∈IP 〉 is a Boolean
representation system.

Proof: One only needs to prove that the transformation functions
{
fB|B′

}
actu-

ally verify Monotony, Idempotence, and Composition. Monotony and Idempotence
directly follow from their definition. Concerning Composition, one has:

{y ∈ B|ρB′|B′′(x) ≤ y} = {y ∈ B|
∧

{z ∈ B′x ≤ z} ≤ y}
⊆ {y ∈ B | x ≤ y}

so that
∧{y ∈ B|x ≤ y} ≤ ∧{y ∈ B|ρB′|B′′(x) ≤ y}

The last inequality is equivalent to ρB|B′′ (x) ≤ ρB|B′ ◦ ρB′|B′′(x). �

Proposition 13. The sum (SP )��
is isomorphic to P .

Proof: Let 〈Bx, x〉 and 〈By, y〉 be two elements of (SP )�. If 〈Bx, x〉 ≤� 〈By, y〉,
then ρBy

(x) ≤ y which implies that x ≤ y. Thus, the elements of (SP )��
are of

the form { 〈B, x〉 | B ∈ IP , x ∈ B} and can be put in a one-to-one correspondence
with x.

It is easy to verify that this bijection preserves both the partial-order relation
and the orthocomplementation. �

Proposition 14. All bounded orthoposets are isomorphic to the sum of a Boolean
representation system.

The notion of compatibility in the field of orthomodular structures can be
easily expressed in our approach: two elements a, b in P are compatible if and
only if ∃B ∈ IP : {a, b} ⊆ B.

Proposition 15. Every orthomodular poset is isomorphic to the sum of a Boolean
representation system which verifies:

∀ a, b ∈ S��
, (a ≤��

b ⇒ (∃ i ∈ I : a = ρi(a) and b = ρi(b)))
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Proof: Two comparable elements a ≤ b of an orthomodular poset are
compatible. �

It should be remarked that the condition in this proposition is exactly Eq. (6)
used in proposition 9.

Proposition 16. Every orthomodular lattice is isomorphic to the sum of a
Boolean representation system which verifies:

∀ a, b ∈ S��
, a ≤��

b ⇒ ∃ i ∈ I : a = ρi(a) and b = ρi(b)

∀ a, b ∈ S��
, ∃ i ∈ I :

{
a = ρi(a) and
∀ j,

(
a = ρj (a) ⇒ ρi(b) ≤��

ρj (b)
)

Proof: The second condition comes from the fact that a and (a ∨ b) ∧ (a ∨ b⊥)
are compatible, and that any element c compatible with a and such that b ≤ c

verifies (a ∨ b) ∧ (a ∨ b⊥) ≤ c. �

The second condition here is exactly Eq. (7) used in Proposition 11.

6. CONCLUSION

In this article, we have presented representation systems and of Boolean rep-
resentation systems which are designed to model partial knowledge about a system
using several points of view, in such a way that each point of view corresponds to a
classical observation of the system. By expressing conditions about the existence
of particular points of view, we have shown that it is possible to characterize
and represent quantum structures such as orthomodular posets and orthomodular
lattices using these structures which are based on classical notions only.
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